11 research outputs found

    Microarray resources for genetic and genomic studies in chicken: a review

    Get PDF
    Advent of microarray technologies revolutionized the nature and scope of genetic and genomic research in human and other species by allowing massively parallel analysis of thousands of genomic sites. They have been used for diverse purposes such as for transcriptome analysis, CNV detection, SNP and CNV genotyping, studying DNA-protein interaction, and detection of genome methylation. Microarrays have also made invaluable contributions to research in chicken which is an important model organism for studying embryology, immunology, oncology, virology, evolution, genetics, and genomics and also for other avian species. Despite their huge contributions in life science research, the future of microarrays is now being questioned with the advent of massively parallel next generation sequencing (NGS) technologies, which promise to overcome some of the limitations of microarray platforms. In this article we review the various microarray resources developed for chicken and their past and potential future applications. We also discuss about the future of microarrays in the NGS era particularly in the context of livestock genetics. We argue that even though NGS promises some major advantages-in particular, offers the opportunity to discover novel elements in the genome-microarrays will continue to be major tools for research and practice in the field of livestock genetics/genomics due to their affordability, high throughput nature, mature established technologies and ease of application. Moreover, with advent of new microarray technologies like capture arrays, the NGS and microarrays are expected to complement each other in future research in life science

    Precision of genetic parameters and breeding values estimated in marker assisted BLUP genetic evaluation

    Get PDF
    In practical implementations of marker-assisted selection economic and logistic restrictions frequently lead to incomplete genotypic data for the animals of interest. This may result in bias and larger standard errors of the estimated parameters and, as a consequence, reduce the benefits of applying marker-assisted selection. Our study examines the impact of the following factors: phenotypic information, depth of pedigree, and missing genotypes in the application of marker-assisted selection. Stochastic simulations were conducted to generate a typical dairy cattle population. Genetic parameters and breeding values were estimated using a two-step approach. First, pre-corrected phenotypes (daughter yield deviations (DYD) for bulls, yield deviations (YD) for cows) were calculated in polygenic animal models for the entire population. These estimated phenotypes were then used in marker assisted BLUP (MA-BLUP) evaluations where only the genotyped animals and their close relatives were included

    A gene frequency model for QTL mapping using Bayesian inference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information for mapping of quantitative trait loci (QTL) comes from two sources: linkage disequilibrium (non-random association of allele states) and cosegregation (non-random association of allele origin). Information from LD can be captured by modeling conditional means and variances at the QTL given marker information. Similarly, information from cosegregation can be captured by modeling conditional covariances. Here, we consider a Bayesian model based on gene frequency (BGF) where both conditional means and variances are modeled as a function of the conditional gene frequencies at the QTL. The parameters in this model include these gene frequencies, additive effect of the QTL, its location, and the residual variance. Bayesian methodology was used to estimate these parameters. The priors used were: logit-normal for gene frequencies, normal for the additive effect, uniform for location, and inverse chi-square for the residual variance. Computer simulation was used to compare the power to detect and accuracy to map QTL by this method with those from least squares analysis using a regression model (LSR).</p> <p>Results</p> <p>To simplify the analysis, data from unrelated individuals in a purebred population were simulated, where only LD information contributes to map the QTL. LD was simulated in a chromosomal segment of 1 cM with one QTL by random mating in a population of size 500 for 1000 generations and in a population of size 100 for 50 generations. The comparison was studied under a range of conditions, which included SNP density of 0.1, 0.05 or 0.02 cM, sample size of 500 or 1000, and phenotypic variance explained by QTL of 2 or 5%. Both 1 and 2-SNP models were considered. Power to detect the QTL for the BGF, ranged from 0.4 to 0.99, and close or equal to the power of the regression using least squares (LSR). Precision to map QTL position of BGF, quantified by the mean absolute error, ranged from 0.11 to 0.21 cM for BGF, and was better than the precision of LSR, which ranged from 0.12 to 0.25 cM.</p> <p>Conclusions</p> <p>In conclusion given a high SNP density, the gene frequency model can be used to map QTL with considerable accuracy even within a 1 cM region.</p

    A First Generation Microsatellite- and SNP-Based Linkage Map of Jatropha

    Get PDF
    Jatropha curcas is a potential plant species for biodiesel production. However, its seed yield is too low for profitable production of biodiesel. To improve the productivity, genetic improvement through breeding is essential. A linkage map is an important component in molecular breeding. We established a first-generation linkage map using a mapping panel containing two backcross populations with 93 progeny. We mapped 506 markers (216 microsatellites and 290 SNPs from ESTs) onto 11 linkage groups. The total length of the map was 1440.9 cM with an average marker space of 2.8 cM. Blasting of 222 Jatropha ESTs containing polymorphic SSR or SNP markers against EST-databases revealed that 91.0%, 86.5% and 79.2% of Jatropha ESTs were homologous to counterparts in castor bean, poplar and Arabidopsis respectively. Mapping 192 orthologous markers to the assembled whole genome sequence of Arabidopsis thaliana identified 38 syntenic blocks and revealed that small linkage blocks were well conserved, but often shuffled. The first generation linkage map and the data of comparative mapping could lay a solid foundation for QTL mapping of agronomic traits, marker-assisted breeding and cloning genes responsible for phenotypic variation

    Genetics of animal health and disease in cattle

    Get PDF
    peer-reviewedThere have been considerable recent advancements in animal breeding and genetics relevant to disease control in cattle, which can now be utilised as part of an overall programme for improved cattle health. This review summarises the contribution of genetic makeup to differences in resistance to many diseases affecting cattle. Significant genetic variation in susceptibility to disease does exist among cattle suggesting that genetic selection for improved resistance to disease will be fruitful. Deficiencies in accurately recorded data on individual animal susceptibility to disease are, however, currently hindering the inclusion of health and disease resistance traits in national breeding goals. Developments in 'omics' technologies, such as genomic selection, may help overcome some of the limitations of traditional breeding programmes and will be especially beneficial in breeding for lowly heritable disease traits that only manifest themselves following exposure to pathogens or environmental stressors in adulthood. However, access to large databases of phenotypes on health and disease will still be necessary. This review clearly shows that genetics make a significant contribution to the overall health and resistance to disease in cattle. Therefore, breeding programmes for improved animal health and disease resistance should be seen as an integral part of any overall national disease control strategy
    corecore